Proyectos
- FONDO DE INVESTIGACIÓN INTERDISCIPLINARIA
- Diciembre 2024 - Diciembre 2026
AdjudicadoUniversidad de O'Higgins
Construcción de modelos de desarrollo y madurez de cerezas mediante IA y visión computacional 3D a partir de imágenes hiperespectrales
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]El proyecto busca aunar competencias en visión computacional y fruticultura, para habilitar la construcción de modelos de crecimiento y madurez de cerezas a partir de modelos 3D construidos a partir de imágenes hiperespectrales. En particular se desarrollarán algoritmos de visión computacional 3D basados en representaciones neuronales implícitas para estimar el color y tamaño de frutos en cerezo durante el ciclo de crecimiento y cosecha, así como para estimar y correlacionar información hiperespectral con variables de calidad, como firmeza y grados brix de los frutos. A partir de estos algoritmos, se desarrollará una metodología para la construcción de modelos de crecimiento de los frutos que aporten a mejorar la calidad de la fruta fresca de exportación.
Es importante destacar que métodos de machine learning basados en representaciones neuronales implícitas están empezando a usarse ampliamente en distintos ámbitos de visión computacional, robótica y sensado remoto. Este tipo de representaciones está permitiendo abordar múltiples problemas en ambientes no controlados en la agricultura, de manera robusta. Por ejemplo, métodos basados en redes neuronales implícitas, tales como Neural Radiance Fields (NeRF) y Deep Signed Functions (DeepSDF) se están explorando para aplicaciones tales como reconstrucción 3D de frutas, árboles y huertos, habilitando aplicaciones de agricultura de precisión, como conteo de frutas y análisis fenológico. Para que el desarrollo de estas aplicaciones tenga un impacto en la agricultura, es necesario el desarrollo de modelos desde una mirada interdisciplinar, considerando tanto métodos del estado del arte de visión computacional y machine learning, así como un conocimiento profundo de fruticultura y en particular de fisiología de los árboles frutales caducos.
La calidad de la fruta de exportación es un pilar fundamental de nuestra fruticultura, y desde esa base, se considera importante el desarrollo de herramientas de monitoreo y diagnóstico que permitan predecir calidad y condición de la fruta oportunamente, y sobre todo bajo un escenario de cambio climático. En la temporada 2021-2022, un 20% de las cerezas presentaron serios problemas de calidad en los mercados de destino. De este volumen, un 28-47% se relacionaron con problemas de manejo en precosecha. En la agricultura convencional el uso de datos ha sido limitado a conocer procesos productivos puntuales tales como el monitoreo de variables ambientales o fisiológicas, las que han dado cuenta de un cierto estado del sistema de la planta de manera indirecta. Algunos avances en automatización en la toma de datos se han reportado para la aplicación de riego de precisión. Sin embargo, desde el mundo académico no existe un gran aprovechamiento de los avances en inteligencia artificial para la agronomía. En efecto, la predicción del comportamiento de variables productivas complejas, especialmente aquellas ligadas a la calidad de la fruta representan aún un desafío no resuelto en la industria nacional. En este sentido las técnicas de machine learning han sido utilizadas con éxito para predecir el rendimiento en diversas especies agrícolas, incluyendo frutales. No obstante, la calidad de fruta ha sido escasamente abordada, pese a existir capacidades teóricas. Debido a esto surge la necesidad del desarrollo de herramientas para construir modelos de crecimiento y madurez de cerezas, así como para que los productores puedan hacer seguimiento de su producción, y en particular de la calidad de ésta.
Con el objetivo de desarrollar una metodología para la construcción de modelos de desarrollo de cerezas mediante imágenes hiperespectral y modelos computacionales 3D de frutos, y así aportar a la mejora de la calidad de la producción de la cereza, el proyecto propone abordar tres grandes objetivos:
● Diseñar y capturar base de datos de imágenes, de variables agroclimáticas y mediciones fisiológicas.
● Desarrollar métodos de visión computacional y IA para la estimación de calibre, firmeza, color, y
grados brix de cerezas.
● Desarrollar, calibrar y validar modelos de crecimiento de cerezas a partir de los resultados obtenidos
con los algoritmos de visión computacional y IA desarrollados.
Para alcanzar estos objetivos, los investigadores convocados tienen un profundo conocimiento en las áreas complementarias desde la ingeniería (visión computacional, machine learning y robótica), y la fruticultura (fisiología de los árboles frutales caducos, sistemas de conducción, portainjertos, y gestión de huertos).[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Investigador/a Responsable
- 23PDT-248765
- Diciembre 2024 - Diciembre 2025
En EjecuciónAgencia Nacional de Investigación y Desarrollo - ANID
Artificial Intelligence and Robotics for Remote and Proximal Sensing in Precision Agriculture
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Métodos basados en representaciones neuronales implícitas están empezando a usarse ampliamente en distintos ámbitos de visión computacional, robótica y sensado remoto. Este tipo de representaciones están permitiendo abordar múltiples problemas en ambientes no controlados como la agricultura, de manera robusta. Por ejemplo, métodos basados en Neural Radiance Fields (NeRF) se están explorando de manera amplia tanto con imágenes satelitales como en problemas de robótica de campo. En este contexto, el proyecto busca aunar competencias en visión computacional y aprendizaje de máquinas, usadas en la detección remota y en robótica, para abordar nuevas técnicas basadas en representaciones neuronales implícitas, para aplicaciones de la agricultura de precisión. Para lograr este objetivo, los investigadores convocados tienen un profundo conocimiento en estas áreas complementarias.
Es importante destacar que las áreas de sensado remoto (satelital y drones) y sensado próximo (robots y redes de sensores) están experimentando una aceleración sin precedentes. En el caso de sensado remoto, además de los grandes programas públicos como Sentinel, los actores privados están creando flotas de microsatélites capaces de vigilar la Tierra con revisitas diarias. Estos datos abundantes, baratos y de alta resolución están creando oportunidades para desarrollar aplicaciones novedosas para la supervisión de la actividad agrícola. En el caso del sensado próximo, las redes de sensores, junto con el uso de robots para monitoreo, está permitiendo un seguimiento regular de los procesos agrícolas, con una alta resolución temporal y espacial, por lo que cada vez hay una mayor disponibilidad de datos, que complementan los datos obtenidos mediante sensado remoto.
A nivel de uso, estas tecnologías se complementan, y a nivel de investigación, las técnicas utilizadas están empezando a converger, mediante el uso de métodos basados en redes neuronales, y más específicamente por métodos basados en representaciones neuronales implícitas, tales como Neural Radiance Fields (NeRF). Por todo esto, el estudio del sensado remoto y próximo de manera conjunta, y mediante marcos de trabajo con técnicas similares como las representaciones neuronales implícitas, tiene un gran potencial para en un futuro próximo generar una visión integrada de los procesos agrícolas mejorando la sostenibilidad y eficiencia en la agricultura.
Durante su ejecución, el proyecto llevará a cabo actividades de investigación conjunta, incluyendo seminarios online regulares, la toma de datos en terreno, y un workshop de cierre en el contexto de una conferencia internacional, que junto con el intercambio de investigadores en formación (magíster, doctorado y/o postdoctorado), así como visitas de investigadores senior, buscan articular una de red de trabajo que aborde de manera interdisciplinar y con técnicas modernas, problemáticas de sensado remoto y próximo en agricultura de precisión mediante representaciones neuronales implícitas, tales como Neural Radiance Fields (NeRF), entre otras.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Responsable Alterno
- FONDO DE INVESTIGACIÓN INTERDISCIPLINARIA
- Diciembre 2024 - Diciembre 2026
AdjudicadoUniversidad de O'Higgins
Construcción de modelos de desarrollo y madurez de cerezas mediante IA y visión computacional 3D a partir de imágenes hiperespectrales
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]El proyecto busca aunar competencias en visión computacional y fruticultura, para habilitar la construcción de modelos de crecimiento y madurez de cerezas a partir de modelos 3D construidos a partir de imágenes hiperespectrales. En particular se desarrollarán algoritmos de visión computacional 3D basados en representaciones neuronales implícitas para estimar el color y tamaño de frutos en cerezo durante el ciclo de crecimiento y cosecha, así como para estimar y correlacionar información hiperespectral con variables de calidad, como firmeza y grados brix de los frutos. A partir de estos algoritmos, se desarrollará una metodología para la construcción de modelos de crecimiento de los frutos que aporten a mejorar la calidad de la fruta fresca de exportación.
Es importante destacar que métodos de machine learning basados en representaciones neuronales implícitas están empezando a usarse ampliamente en distintos ámbitos de visión computacional, robótica y sensado remoto. Este tipo de representaciones está permitiendo abordar múltiples problemas en ambientes no controlados en la agricultura, de manera robusta. Por ejemplo, métodos basados en redes neuronales implícitas, tales como Neural Radiance Fields (NeRF) y Deep Signed Functions (DeepSDF) se están explorando para aplicaciones tales como reconstrucción 3D de frutas, árboles y huertos, habilitando aplicaciones de agricultura de precisión, como conteo de frutas y análisis fenológico. Para que el desarrollo de estas aplicaciones tenga un impacto en la agricultura, es necesario el desarrollo de modelos desde una mirada interdisciplinar, considerando tanto métodos del estado del arte de visión computacional y machine learning, así como un conocimiento profundo de fruticultura y en particular de fisiología de los árboles frutales caducos.
La calidad de la fruta de exportación es un pilar fundamental de nuestra fruticultura, y desde esa base, se considera importante el desarrollo de herramientas de monitoreo y diagnóstico que permitan predecir calidad y condición de la fruta oportunamente, y sobre todo bajo un escenario de cambio climático. En la temporada 2021-2022, un 20% de las cerezas presentaron serios problemas de calidad en los mercados de destino. De este volumen, un 28-47% se relacionaron con problemas de manejo en precosecha. En la agricultura convencional el uso de datos ha sido limitado a conocer procesos productivos puntuales tales como el monitoreo de variables ambientales o fisiológicas, las que han dado cuenta de un cierto estado del sistema de la planta de manera indirecta. Algunos avances en automatización en la toma de datos se han reportado para la aplicación de riego de precisión. Sin embargo, desde el mundo académico no existe un gran aprovechamiento de los avances en inteligencia artificial para la agronomía. En efecto, la predicción del comportamiento de variables productivas complejas, especialmente aquellas ligadas a la calidad de la fruta representan aún un desafío no resuelto en la industria nacional. En este sentido las técnicas de machine learning han sido utilizadas con éxito para predecir el rendimiento en diversas especies agrícolas, incluyendo frutales. No obstante, la calidad de fruta ha sido escasamente abordada, pese a existir capacidades teóricas. Debido a esto surge la necesidad del desarrollo de herramientas para construir modelos de crecimiento y madurez de cerezas, así como para que los productores puedan hacer seguimiento de su producción, y en particular de la calidad de ésta.
Con el objetivo de desarrollar una metodología para la construcción de modelos de desarrollo de cerezas mediante imágenes hiperespectral y modelos computacionales 3D de frutos, y así aportar a la mejora de la calidad de la producción de la cereza, el proyecto propone abordar tres grandes objetivos:
● Diseñar y capturar base de datos de imágenes, de variables agroclimáticas y mediciones fisiológicas.
● Desarrollar métodos de visión computacional y IA para la estimación de calibre, firmeza, color, y
grados brix de cerezas.
● Desarrollar, calibrar y validar modelos de crecimiento de cerezas a partir de los resultados obtenidos
con los algoritmos de visión computacional y IA desarrollados.
Para alcanzar estos objetivos, los investigadores convocados tienen un profundo conocimiento en las áreas complementarias desde la ingeniería (visión computacional, machine learning y robótica), y la fruticultura (fisiología de los árboles frutales caducos, sistemas de conducción, portainjertos, y gestión de huertos).[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Responsable Alterno
- MSM2021003
- Diciembre 2024 - Diciembre 2025
En EjecuciónAgencia Nacional de Investigación y Desarrollo - ANID
Artificial Intelligence and Robotics for Remote and Proximal Sensing in Precision Agriculture
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Métodos basados en representaciones neuronales implícitas están empezando a usarse ampliamente en distintos ámbitos de visión computacional, robótica y sensado remoto. Este tipo de representaciones están permitiendo abordar múltiples problemas en ambientes no controlados como la agricultura, de manera robusta. Por ejemplo, métodos basados en Neural Radiance Fields (NeRF) se están explorando de manera amplia tanto con imágenes satelitales como en problemas de robótica de campo. En este contexto, el proyecto busca aunar competencias en visión computacional y aprendizaje de máquinas, usadas en la detección remota y en robótica, para abordar nuevas técnicas basadas en representaciones neuronales implícitas, para aplicaciones de la agricultura de precisión. Para lograr este objetivo, los investigadores convocados tienen un profundo conocimiento en estas áreas complementarias.
Es importante destacar que las áreas de sensado remoto (satelital y drones) y sensado próximo (robots y redes de sensores) están experimentando una aceleración sin precedentes. En el caso de sensado remoto, además de los grandes programas públicos como Sentinel, los actores privados están creando flotas de microsatélites capaces de vigilar la Tierra con revisitas diarias. Estos datos abundantes, baratos y de alta resolución están creando oportunidades para desarrollar aplicaciones novedosas para la supervisión de la actividad agrícola. En el caso del sensado próximo, las redes de sensores, junto con el uso de robots para monitoreo, está permitiendo un seguimiento regular de los procesos agrícolas, con una alta resolución temporal y espacial, por lo que cada vez hay una mayor disponibilidad de datos, que complementan los datos obtenidos mediante sensado remoto.
A nivel de uso, estas tecnologías se complementan, y a nivel de investigación, las técnicas utilizadas están empezando a converger, mediante el uso de métodos basados en redes neuronales, y más específicamente por métodos basados en representaciones neuronales implícitas, tales como Neural Radiance Fields (NeRF). Por todo esto, el estudio del sensado remoto y próximo de manera conjunta, y mediante marcos de trabajo con técnicas similares como las representaciones neuronales implícitas, tiene un gran potencial para en un futuro próximo generar una visión integrada de los procesos agrícolas mejorando la sostenibilidad y eficiencia en la agricultura.
Durante su ejecución, el proyecto llevará a cabo actividades de investigación conjunta, incluyendo seminarios online regulares, la toma de datos en terreno, y un workshop de cierre en el contexto de una conferencia internacional, que junto con el intercambio de investigadores en formación (magíster, doctorado y/o postdoctorado), así como visitas de investigadores senior, buscan articular una de red de trabajo que aborde de manera interdisciplinar y con técnicas modernas, problemáticas de sensado remoto y próximo en agricultura de precisión mediante representaciones neuronales implícitas, tales como Neural Radiance Fields (NeRF), entre otras.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Co-Investigador/a
- EQM230041
- Diciembre 2024 - Diciembre 2025
En EjecuciónAgencia Nacional de Investigación y Desarrollo - ANID
Artificial Intelligence and Robotics for Remote and Proximal Sensing in Precision Agriculture
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Métodos basados en representaciones neuronales implícitas están empezando a usarse ampliamente en distintos ámbitos de visión computacional, robótica y sensado remoto. Este tipo de representaciones están permitiendo abordar múltiples problemas en ambientes no controlados como la agricultura, de manera robusta. Por ejemplo, métodos basados en Neural Radiance Fields (NeRF) se están explorando de manera amplia tanto con imágenes satelitales como en problemas de robótica de campo. En este contexto, el proyecto busca aunar competencias en visión computacional y aprendizaje de máquinas, usadas en la detección remota y en robótica, para abordar nuevas técnicas basadas en representaciones neuronales implícitas, para aplicaciones de la agricultura de precisión. Para lograr este objetivo, los investigadores convocados tienen un profundo conocimiento en estas áreas complementarias.
Es importante destacar que las áreas de sensado remoto (satelital y drones) y sensado próximo (robots y redes de sensores) están experimentando una aceleración sin precedentes. En el caso de sensado remoto, además de los grandes programas públicos como Sentinel, los actores privados están creando flotas de microsatélites capaces de vigilar la Tierra con revisitas diarias. Estos datos abundantes, baratos y de alta resolución están creando oportunidades para desarrollar aplicaciones novedosas para la supervisión de la actividad agrícola. En el caso del sensado próximo, las redes de sensores, junto con el uso de robots para monitoreo, está permitiendo un seguimiento regular de los procesos agrícolas, con una alta resolución temporal y espacial, por lo que cada vez hay una mayor disponibilidad de datos, que complementan los datos obtenidos mediante sensado remoto.
A nivel de uso, estas tecnologías se complementan, y a nivel de investigación, las técnicas utilizadas están empezando a converger, mediante el uso de métodos basados en redes neuronales, y más específicamente por métodos basados en representaciones neuronales implícitas, tales como Neural Radiance Fields (NeRF). Por todo esto, el estudio del sensado remoto y próximo de manera conjunta, y mediante marcos de trabajo con técnicas similares como las representaciones neuronales implícitas, tiene un gran potencial para en un futuro próximo generar una visión integrada de los procesos agrícolas mejorando la sostenibilidad y eficiencia en la agricultura.
Durante su ejecución, el proyecto llevará a cabo actividades de investigación conjunta, incluyendo seminarios online regulares, la toma de datos en terreno, y un workshop de cierre en el contexto de una conferencia internacional, que junto con el intercambio de investigadores en formación (magíster, doctorado y/o postdoctorado), así como visitas de investigadores senior, buscan articular una de red de trabajo que aborde de manera interdisciplinar y con técnicas modernas, problemáticas de sensado remoto y próximo en agricultura de precisión mediante representaciones neuronales implícitas, tales como Neural Radiance Fields (NeRF), entre otras.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Co-Investigador/a
- FONDO DE INVESTIGACIÓN INTERDISCIPLINARIA
- Diciembre 2024 - Diciembre 2026
AdjudicadoUniversidad de O'Higgins
Construcción de modelos de desarrollo y madurez de cerezas mediante IA y visión computacional 3D a partir de imágenes hiperespectrales
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]El proyecto busca aunar competencias en visión computacional y fruticultura, para habilitar la construcción de modelos de crecimiento y madurez de cerezas a partir de modelos 3D construidos a partir de imágenes hiperespectrales. En particular se desarrollarán algoritmos de visión computacional 3D basados en representaciones neuronales implícitas para estimar el color y tamaño de frutos en cerezo durante el ciclo de crecimiento y cosecha, así como para estimar y correlacionar información hiperespectral con variables de calidad, como firmeza y grados brix de los frutos. A partir de estos algoritmos, se desarrollará una metodología para la construcción de modelos de crecimiento de los frutos que aporten a mejorar la calidad de la fruta fresca de exportación.
Es importante destacar que métodos de machine learning basados en representaciones neuronales implícitas están empezando a usarse ampliamente en distintos ámbitos de visión computacional, robótica y sensado remoto. Este tipo de representaciones está permitiendo abordar múltiples problemas en ambientes no controlados en la agricultura, de manera robusta. Por ejemplo, métodos basados en redes neuronales implícitas, tales como Neural Radiance Fields (NeRF) y Deep Signed Functions (DeepSDF) se están explorando para aplicaciones tales como reconstrucción 3D de frutas, árboles y huertos, habilitando aplicaciones de agricultura de precisión, como conteo de frutas y análisis fenológico. Para que el desarrollo de estas aplicaciones tenga un impacto en la agricultura, es necesario el desarrollo de modelos desde una mirada interdisciplinar, considerando tanto métodos del estado del arte de visión computacional y machine learning, así como un conocimiento profundo de fruticultura y en particular de fisiología de los árboles frutales caducos.
La calidad de la fruta de exportación es un pilar fundamental de nuestra fruticultura, y desde esa base, se considera importante el desarrollo de herramientas de monitoreo y diagnóstico que permitan predecir calidad y condición de la fruta oportunamente, y sobre todo bajo un escenario de cambio climático. En la temporada 2021-2022, un 20% de las cerezas presentaron serios problemas de calidad en los mercados de destino. De este volumen, un 28-47% se relacionaron con problemas de manejo en precosecha. En la agricultura convencional el uso de datos ha sido limitado a conocer procesos productivos puntuales tales como el monitoreo de variables ambientales o fisiológicas, las que han dado cuenta de un cierto estado del sistema de la planta de manera indirecta. Algunos avances en automatización en la toma de datos se han reportado para la aplicación de riego de precisión. Sin embargo, desde el mundo académico no existe un gran aprovechamiento de los avances en inteligencia artificial para la agronomía. En efecto, la predicción del comportamiento de variables productivas complejas, especialmente aquellas ligadas a la calidad de la fruta representan aún un desafío no resuelto en la industria nacional. En este sentido las técnicas de machine learning han sido utilizadas con éxito para predecir el rendimiento en diversas especies agrícolas, incluyendo frutales. No obstante, la calidad de fruta ha sido escasamente abordada, pese a existir capacidades teóricas. Debido a esto surge la necesidad del desarrollo de herramientas para construir modelos de crecimiento y madurez de cerezas, así como para que los productores puedan hacer seguimiento de su producción, y en particular de la calidad de ésta.
Con el objetivo de desarrollar una metodología para la construcción de modelos de desarrollo de cerezas mediante imágenes hiperespectral y modelos computacionales 3D de frutos, y así aportar a la mejora de la calidad de la producción de la cereza, el proyecto propone abordar tres grandes objetivos:
● Diseñar y capturar base de datos de imágenes, de variables agroclimáticas y mediciones fisiológicas.
● Desarrollar métodos de visión computacional y IA para la estimación de calibre, firmeza, color, y
grados brix de cerezas.
● Desarrollar, calibrar y validar modelos de crecimiento de cerezas a partir de los resultados obtenidos
con los algoritmos de visión computacional y IA desarrollados.
Para alcanzar estos objetivos, los investigadores convocados tienen un profundo conocimiento en las áreas complementarias desde la ingeniería (visión computacional, machine learning y robótica), y la fruticultura (fisiología de los árboles frutales caducos, sistemas de conducción, portainjertos, y gestión de huertos).[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Co-Investigador/a
- 716140
- Diciembre 2024 - Diciembre 2024
FinalizadoMinisterio de Ciencia, Tecnología, Conocimiento e Innovación
AIJ support grant for organizing the Third Latin American Summer School on Cognitive Robotics
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Fondos para apoyar la realizacion de la Third Latin American Summer School on Cognitive Robotics (LACORO 2024). La primera edición se realizó online en octubre de 2020; la segunda fue presencial en enero de 2023; la tercera versión tendrá lugar entre el 9 y el 13 de diciembre de 2024 en la Universidad de O'Higgins en Rancagua, Chile. https://lacoro.org/
Esta Escuela de Verano beneficiará principalmente a Estudiantes y Académicos de las Américas interesados en la Investigación en Inteligencia Artificial aplicada a la Robótica. Nuestro objetivo es fomentar la colaboración nacional y regional en esta área de investigación. Para la primera edición, alcanzamos 241 inscripciones para actividades online de todo el mundo, y la segunda versión tuvo 166 inscripciones para actividades presenciales en enero de 2023, principalmente de Chile, México, Argentina, Brasil y Uruguay.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Investigador/a Responsable
- FONDEF IT23I0012
- Diciembre 2024 - Diciembre 2024
FinalizadoIEEE CIS
IEEE CIS support grant for organizing the Third Latin American Summer School on Robotics
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Escuela de Verano Latino Americana de Robotica (LACORO)[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Investigador/a Responsable
- FOVI230206
- Diciembre 2024 - Marzo 2024
AdjudicadoMinisterio de Educación
¿Qué se necesita para implementar los Cuadernos de Escritura Guiada de la Estrategia LEC para aprender?: Factores docentes y factores contextuales
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Los Cuadernos de Escritura Guiada (CEG) constituye un material didáctico relevante para la implementación de la Estrategia LEC para Aprender del MINEDUC. Su llegada a las aulas del país representa un aporte para la enseñanza de la escritura a lo largo de la formación de niños, niñas y jóvenes. Por esta razón, nos proponemos indagar en torno a las variables que favorecen y limitan su implementación en las salas de clases de escuelas de tres regiones del país mediante diferentes métodos para la recolección de datos. Finalmente, el estudio espera ofrecer lineamientos respecto a cómo emplear adecudamente estos recursos didácticos para la escritura en las salas de clases del país.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Investigador/a Responsable
- 230157
- Diciembre 2024 - Julio 2026
AdjudicadoUniversidad de O'Higgins
El riesgo de no ser admitido a la escuela vecina: La experiencia de la elección escolar según nivel de ruralidad en Chile
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Chile tiene una larga historia de implementación de un mercado escolar basado en los argumentos de que la elección escolar puede mejorar la calidad de la educación. Esta política de elección escolar es una política nacional, afectando a familias de zonas urbanas y también rurales. Históricamente y a nivel internacional, es en el área urbana dónde se dan procesos más intensos de elección de escuela, no en la rural. Actualmente, en Chile, con un nuevo índice de ruralidad y la implementación de un sistema de admisión centralizada, tenemos mejores datos para poder entender cómo funciona el mercado escolar fuera de las zonas urbanas, con la posibilidad de caracterizar el fenómeno según niveles de ruralidad. Esta caracterización y análisis de las experiencias de familias y directivos de escuelas enfrentando diversas condiciones de ruralidad será esencial para poder identificar los principales desafíos que se enfrentan y las políticas más esenciales para mejorar las condiciones y el acceso a educación de calidad. Las experiencias no son todas iguales, y así las políticas tienen que reconocer que la experiencia de elección escolar no es homogénea entre zonas altamente urbanas, altamente rurales e intermedias.
Este proyecto busca caracterizar y analizar cómo la realidad de la elección de escuelas varía según el nivel de ruralidad, utilizando un índice de ruralidad escolar (IRE) innovador (Giaconi et al., 2022) para analizar los mercados escolares, las preferencias de los postulantes y los resultados de asignación en el sistema de admisión escolar, así como comprender las percepciones y experiencias de los actores clave (padres y directores) en relación con la oferta educativa y la movilidad escolar en dichos contextos. Específicamente se busca: 1. Validar y extender el índice de ruralidad escolar para su uso en el análisis del sistema educativo de la educación básica y la educación media. 2. Describir la distribución de la oferta y demanda del mercado escolar según el nivel de ruralidad. 3. Evaluar diferencias según nivel de ruralidad en el impacto de la asignación a la primera preferencia en el desempeño de los estudiantes asignados a escuelas con sobredemanda (donde la asignación se realiza por lotería). 4. Caracterizar las experiencias y percepciones de apoderadas/os respecto al proceso de elección de escuela y admisión vía SAE, en establecimientos educacionales con enseñanza básica en distintos niveles de ruralidad en la Región de OHiggins.
Para este análisis se usarán métodos mixtos, con un análisis estadístico descriptivo y entrevistas en profundidad semi-estructuradas. Para el componente cuantitativo se usarán datos administrativos del sistema de admisión escolar (SAE) y del Ministerio de Educación (incluyendo matrícula y SIMCE) para identificar zonas que enfrentan diversas realidades con respecto al mercado escolar y evaluar cómo esto está relacionado al riesgo de no acceder a su primera preferencia. En el análisis cualitativo se va a profundizar en lo encontrado con el análisis cuantitativo, utilizando entrevistas con directores de escuelas y con familias de estudiantes que recién están entrando a escuelas públicas o particulares subvencionados en áreas con distintos niveles de ruralidad en la Región de OHiggins. Estas entrevistas permitirán un conocimiento más detallado de los distintos desafíos que enfrentan estos actores y las diversas necesidades que puedan ser atendidas para mejorar las experiencias de participación en los mercados educativos.
Además de su contribución al conocimiento académico, este estudio tiene implicaciones prácticas directas para la mejora del sistema educativo en Chile. Los resultados permitirán informar a reformas en las políticas educativas que aborden las experiencias de familias y escuelas en diversos contextos, más allá de solo lo urbano. El proyecto también contribuye a la formación de nuevos investigadores, incluyendo estudiantes de pregrado y una investigadora posdoctoral que participarán en diversas etapas de la investigación.
En resumen, este proyecto busca comprender las diversas experiencias y necesidades de familias y escuelas que difieren según su experiencia de la ruralidad, combinando métodos cuantitativos y cualitativos avanzados. Su enfoque holístico y su potencial impacto en las políticas educativas lo posicionan como un estudio crucial para mejorar la calidad del sistema educacional de Chile y de la región.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Responsable Alterno